
 Classes and Objects I 

1 Rectangle.java and RectangleApp.java

1.1 Download, compile and run

Download RectangleApp.java and Rectangle.java from the ELE. Save them
in this workshop’s folder.

First, compile it with command:
>> javac RectangleApp.java RETURN

If successful, you will see two class files (Rectangle.class and RectangleApp.class)
are generated, which means you don’t need compile the Rectangle.java man-
ually.

Then, run it with command:
>> java RectangleApp RETURN

Read through the codes. Make sure you understand how the program is 
working.

1.2 The this keyword

• In the Rectangle class, change the second constructor’s arguments as
follows:

public Rectangle(double width, double height)

What changes should you make for the constructor’s body to set the local
object attributes.

1



Hints

Use the this keyword to resolve the conflict between instance attributes
and constructors’ arguments.

• In the third constructor’s body, currently the attributes (width and height)
are initialized with two assignment statements:

width = w;

height = h;

Could you replace the above statements with one statement which calls 
the second constructor?

Hints

this(w,h);//call the second constructor

Recompile it and make sure it is compiled successfully.

1.3 More methods

• Add two methods, both are for zooming the rectangle, therefore, they
share the same method name (zoom) but with different arguments, which
is known as method overloading.

– The rectangle’s width and height are zoomed with the same factor,
i.e., only one argument for the zoom() method.

– The rectangle’s width and height are zoomed with different factors,
i.e., two arguments are needed for the zoom() method.

In the RectangleApp class’s main() method, create one more rectangle
(name it rect1) by calling one of the three constructors with any ini-
tial values. Then call the two methods you have created, test if the two
methods are correct or not.

• Add one method for determining if two rectangles are overlapped or not:

public boolean isOverlappedWith(Rectangle r){...}

As discussed in the lecture, this must be an instance method, as we need
create one rectangle instance to call this method whose argument is an-
other rectangle instance. In the RectangleApp class’s main() method,
test if the method is correct or not by using the two existing rectangle
objects (myRect and rect1). You may either

boolean b1 = myRect.isOverlappedWith(rect1);

Or

2



boolean b2 = rect1.isOverlappedWith(myRect);

The output values (b1 and b2) for the above two statements must always
equal, otherwise, your method must be wrong.

• Add one method calcRatio() for calculating the ratio of width to height.

• Add one method isSquare() for determining if the rectangle is square or
not.

Note: use the correct way of testing floating-point numbers for equality,
as practiced in the first workshop.

• Can you think about any other behaviors/methods a rectangle has?

Hints

For example, compare two rectangles’ size, move the rectangle horizontally
or vertically, compute the diagonal, permute the width and height, etc.

Instead of implementing all these methods now, let’s move on to the next
task.

1.4 The access modifier

As mentioned in the lecture, a well-encapsulated class always hide their at-
tributes to avoid the object’s state (or attributes) been directly changed outside
of the class. To achieve this principle, we need set all the instance attributes
private. Then provide public setter and getter methods to modify and view
the attributes.

Now change the Rectangle class to a well-encapsulated class. Compile the
Rectangle.java file first, make sure it is all correct.

Hints

private double width; // private attribute

public double getWidth(){ // getter method

return width;

}

public void setWidth(double width){// setter method

this.width = width;

}

// do similar changes for the other attributes

...

Now if you compile the RectanleApp.java, you must get a few compiling
errors because of accessing private attributes. You need make corresponding
changes to solve the issue.

Hints
For example, change the myRect.originX to myRect.getOrginX().

Recompile and rerun the program.

3



1.5 Object reference

Now create three rectangles in the main() method as follows.

Rectangle rect2 = new Rectangle(10.0,5.0);

Rectangle rect3 = new Rectangle(10.0,5.0);

Rectangle rect4 = rect3;

Then use println() to print the three rectangle’s ‘value’.

System.out.println("rect2: " + rect2);

System.out.println("rect3: " + rect3);

System.out.println("rect4: " + rect4);

When run the program, you will see the output like this: Rectangle@7852e922,
which is the class name together with the hashcode of the object in hexadecimal
(you may understand it as the memory address for each object). You may see
the hashcode of rect2 and rect3 are different, because whenever you new an
object, the compiler will allocate a new block of memory for it.

While you must have seen that rect3 and rect4 have the same hash code,
because these two objects point to the same memory address. This means that
whenever you change any attribute’s value for one object, the other object’s
attribute value also changes. In another word, you may treat them as one
object, but with two names (rect3 and rect4). Try the following statements
yourself.

rect3.zoom(0.5);

System.out.println("rect3’s width: " + rect3.getWidth());

System.out.println("rect4’s width: " + rect4.getWidth());

Re-run it, you must see both rect3 and rect4 have been zoomed into half
size.

1.6 toString() method

Every well-designed Java class should contain a public method called tostring()

that returns a short description of the instance (in a return type of String). The
toString() method can be called explicitly (via objectName.toString()) just
like any other method; or implicitly through println() or print(). If an in-
stance is passed to the println(objectName) method, the toString() method
of that instance will be invoked implicitly. Now, add the following toString()

method to the Rectangle class:

// Return a description of a rectangle in the form of

// Rectangle[x=*,y=*,w=*,h=*]

public String toString(){

return

"Rectangle[x="+originX+",y="+originY+",w="+width+",h="+height+"]";

}

4



Re-compile and re-run RectangleApp.java, you must have seen the outputs
of the following statements are different.

System.out.println("rect2: " + rect2);

System.out.println("rect3: " + rect3);

System.out.println("rect4: " + rect4);

This is because if a class doesn’t have the toString() method, the compiler
will output the default ”className@hashcode”1. If a class has defined the
toString() method, the compiler will output the form which you customize.

As metioned above, you may call toString() method explicitly, just like
any other methods:

System.out.println("rect2: " + rect2.toString());

2 Circle.java and CircleApp.java

We have learnt how to calculate areas and circumference of a circle by putting
everything in the main() method in the CircleComputation.java file. Now
let’s re-implement it in the object-oriented way. Similar to what you have
done with the rectangles, you need first define a Circle class to encapsulate all
relevant attributes and methods about a circle. Then add a test class CircleApp
with a main() method to create circles and call all circles’ methods.

You may consider the following attributes, methods and constructors in the
Circle class.

• Attributes: (all set to be ’private’)

– radius

– originX

– originY

• Constructors:

– no-arg constructor

– a constructor with one argument (radius)

– a constructor with three arguments (radius and originX, originY)

• Methods:

– Set the radius

– Set the origin

– Get the radius

– Get the originX

1For detailed reasons, we will explain it later in this module when we learn inheritance.

5



– Get the originY

– Compute the area 2

– Compute the circumference.

– Move the circle.

– Describe the basic information of a circle by defining the toString()
method.

– Zoom the circle by a factor.

– Determine if a circle is overlapped with another circle. There are two
options. One is to define an instance method:

public boolean isOverlappedWith(Circle c)

The other is to define a static method:

public static boolean isOverlapped(Circle c1, Circle c2)

Since you have practiced the instance method in Rectangle class,
here choose the static method to implement. If any problem, ask the
assistant for help.

– Determine if one circle is inside another circle. This method could
also be implemented with either an instance method or a static
method. Choose one you prefer to implement.

Then compile it with command:
>> javac Circle.java RETURN

If successful, you will see a class files (Circle.class). At the moment the
byte codes is not executable, as there is no main() method.

Now create an application (with main() method) CircleApp.java to test
your Circle class.

In the main() method, create a few circles with different attributes. Test
all the methods you have created. Make sure all work as they are supposed to
before moving to the next task.

3 ShapeApp.java

Create a new application with name ShapeApp.java. This application has one
character input argument. The execution command is like this:

>> java ShapeApp c RETURN
You need first check if there is one and only one arguement as follows in the

main() method.
2You may need to use PI, instead of defining yourself, use the Java provided static attribute 

Math.PI instead.

6



if (args.length!=1){

System.out.println("One and only one argument needed!");

System.exit(0);

}

To convert the String arguement into a character, use the follow statement:

char c = args[0].charAt(0);

This application works like this:

• If the input is ’C’ or ’c’, create two circles. One circle shrinks with a ran-
dom factor3 (between 0.5 and 1), the other circle expands with a random
factor (between 1.0 and 2.0). This process repeats until one circle is inside
the other.

• If the input is ’R’ or ’r’, create two rectangles. One rectangle moves
randomly (the maximum distance it moves on x or y axis is 5.0), the
other zooms randomly (the zoom factor for each axis is between 0.5 and
2.0). When zooming the rectangle, also need make sure the ratio of width
to height is within [1/4,4]. This process repeats until the two rectangles
overlap.

• Otherwise, print on the screen a message: ’Only support four characters
(’r’,’R’,’c’,’C’).’.

For each iteration, print out on the screen the two objects’ information, which
could help you to check if the program runs correct or not.

Hints
As nextDouble() method in the Random class only generates a random num-

ber between 0 and 1. To generate a random number between rangeMin and
rangeMax, see the following:

import java.util.Random;//import it at the beginning of the program

...

Random r = new Random();

double x = rangeMin + (rangeMax - rangeMin) * r.nextDouble();

3You may use either the Random class’s nextDouble() method or the Math.random() to
generate random numbers.

7


	Rectangle.java and RectangleApp.java
	Download, compile and run
	The bluethisblack keyword
	More methods
	The access modifier
	Object reference
	toString() method

	Circle.java and CircleApp.java
	ShapeApp.java



